NEW READ RETRY

Powerful and automatic solution to improve reading of NAND flash chips

Patryk Płudowski - RUSOLUT

What is Read Retry?

READ RETRY IS A SPECIFIC COMMAND SET TO TWEAK READING MODE

Problem with chip reading – bit errors

	on of of ollow of on oilon of ow oploc on of ot		00 01 02 03 04 05 06 07 08 09 08 08 00 0D 0F 0F	
0000000000	EB 58 90 61 6E 64 72 6F 69 64 20 00 02 20 24 20 ëX ^D android		FR 58 00 61 6F 64 72 6F 60 64 20 00 02 20 24 00	öv∏andraid t
0000000010	02 00 00 00 00 F0 00 00 10 00 04 00 00 00 00 00đ	• 0000000000		
0000000020	00 5F 27 00 36 02 00 00 00 00 00 00 02 00 00 00'.6	• • • • • • • • • • • • • • • • • • • •		
000000030	01 00 02 00 04 00 00 00 00 00 00 00 00 00 08 00	• 0000000020		
0000000040	00 00 29 E0 0F 1B 60 4C 2D 45 4D 45 4E 54 20 33)ŕ`L-EMENT	3 0000000000	00 00 29 E0 0E 1B E0 4C 2D 45 4D 45 4E 54 20 33	۱
0000000050	34 38 46 41 D4 33 32 20 A0 20 FA 31 C0 CE D0 BC 48FAÔ32 ú1ŔÎ:	E 000000040	25 20 45 41 54 22 22 20 20 20 FL 21 CO 0F DO PC	50FAT22
000000060	00 7C FB 8E D8 E8 00 00 5E 83 C6 19 BB 07 00 FC . űŽŘč^□Ć.».	ü 0000000050	00 7C FR 9F D9 F0 00 00 5F 93 C6 10 BR 07 00 FC	107Dá ADC - 0
0000000070	AC 8C C0 74 06 B4 0E C5 10 CB F5 30 E4 CD 16 CD ¬ŚŔt.'.Ĺ.ËŐOäÍ	1 0000000000	AC 84 CO 74 OF B4 OF CD 10 FB F5 30 F4 CD 16 CD	. uzki □c.»u p+ ′ f ačoaf f
0800000080	19 0D 4A 4E 6F 6E 2D 73 79 73 74 65 6D 28 64 69JNon-system (li 00000000000	10 0D 0A AF 6F 6F 2D 73 70 73 74 65 6D 20 64 60	Non-system di
000000090	73 6B 0D 0A 50 72 65 73 53 20 61 6E 79 20 6B 67 sk. PresS any	g 0000000000	73 6B 0D 0A 50 72 65 73 73 20 61 6F 79 20 6B 65	ek Drass sny ka
0A00000000	79 20 74 6F 20 72 65 62 6F 6F 74 0D 0A 00 00 02 y to reboot	00000000000	79 20 74 6F 20 72 65 62 6F 6F 74 0D 0A 00 00	v to reboot
0000000B0	02 00 00 00 00 00 00 00 20 00 00 00 00 0	· 000000000000000000000000000000000000		y to repost
0000000C0	40 00 00 01 00 02 00 00 00 00 00 00 00 00 00 00 00	• 00000000000		
0000000D0	00 00 00 00 00 00 00 00 00 00 00 00 00	• 0000000000		
0000000E0	00 80 00 00 00 00 00 00 00 00 00 00 00 0	· 00000000E0		
00000000F0	04 00 00 00 00 00 00 20 00 00 00 00 00 00	· 00000000F0		
0000000100	00 00 00 00 00 00 00 00 00 00 00 00 00			
0000000110	00 80 00 01 00 00 00 00 00 01 02 01 00 00 00 .€	. 0000000110	00 00 00 00 00 00 00 00 00 00 00 00 00	
0000000120	00 00 00 00 00 00 01 00 00 00 00 00 00 0	. 0000000120	00 00 00 00 00 00 00 00 00 00 00 00 00	
0000000130	00 00 00 00 00 00 00 00 00 10 00 00 00 0	. 0000000130		
0000000140	00 00 00 00 04 80 00 00 00 40 00 00 00 00 00 00 00€	. 0000000140		
0000000150	00 00 00 00 00 00 80 00 04 00 00 00 08 00 00€€	. 0000000150	00 00 00 00 00 00 00 00 00 00 00 00 00	
0000000160	00 00 00 00 04 10 00 04 00 00 00 00 00 00 00 00	• 0000000160		
0000000170	00 90 00 01 40 00 00 00 01 00 00 00 00 00 00		00 00 00 00 00 00 00 00 00 00 00 00 00	
0000000180	00 00 28 00 08 00 00 00 00 00 00 00 00 10 00 00(• 0000000180	00 00 00 00 00 00 00 00 00 00 00 00 00	
0000000190	00 00		00 (
00000001A0		• 00000001A0		D
00000001B0		•• 00000001B0		\
0000000100	00 0(e	· 00000001C0	00 (
00000001D0	00 00 00 00 40 00 20 00 00 10 00 00 00 00 00 00	•• 00000001D0	00 00 00 00 00 00 00 00 00 00 00 00 00	
00000001E0		0000001E0	00 00 00 00 00 00 00 00 00 00 00 00 00	
0000001F0	<u></u>	00000001F0	00 00 00 00 00 00 00 00 00 00 00 00 00	UŞ
				-

Bit error sources

- Read disturb (noise, connection problems)
- Program disturb
- Endurance of cells
- Data retention

Error Correction Codes (ECC)

ECC CORRECTABILTY IS STRICTLY LIMITED BY ECC CAPABILITY Uncorrectable errors can be repaired with Read Retry

NAND flash internals

Page decoder

ANALOG STATES FROM CELLS ARE CONVERTED INTO DIGITAL DATA

Architecture of cells

Thresholds in memory cells

THE DATA IN CELL IS STORED AS A VOLTAGE LEVEL

Voltage[V] = Stored data

Bits inside memory cell

THE DATA IN CELL IS STORED AS A VOLTAGE LEVEL Controller is reading data according to specific zones

9

Retention Error

WHEN CHARGE LEAKS OUT FROM CELL WE GET BIT ERROR

Read-Retry Mechanism

Cycle	1	2	3	4	HEX
Initial	10	11	11	10	BE
Default read	00	11	11	00	3C

WHEN CHARGE LEAKS OUT FROM CELL WE GET BIT ERROR Degraded cell gives wrong data

Voltage[V] = Stored data

Read-Retry Mechanism #1

READ RETRY MECHANISM HELPS TO SHIFT READ VOLTAGE THRESHOLDS

Read-Retry Mechanism #2

READ RETRY MECHANISM HELPS TO SHIFT READ VOLTAGE THRESHOLDS

Sets of parameters

ALL ZONES NEED TO BE ADJUSTED SEPARETLY

Read Retry effect

DIFFERENT PARAMETERS PRODUCE DIFFERENT ERROR RATE

What we did to implement Read Retry?

New firmware which allows us to read chips faster and change NAND protocol instantly

We made new universal software platform just to start Read Retry analysis

ader									5 1	
ommani	d Block r	nop Inco	ementor	Find para	ameters					
Bock address								8207705088 🔂 🗌 by had pages 📃	Find	
Error										
18.00	22,00	28.00	25.00	30.00	35.00	27.00	21.00			ř
27.00	25.00	30.00	25.00	35.00	41.00	31.00	24.00			
34.00	27.00	33.00	30.00	37.00	42.00	33.00	31.00			
38.00	27.00	41.00	39.00	39.00	49.00	36.00	37.00			
37.00	34.00	47.00	37.00	43.00	54.00	40.00	43.00			
48.00	40.00	55.00	52.00	49.00	57.00	46.00	57.00			
55.00	48.00	58.00	\$7.00	55.00	100	48.00	60.00			i.
+	58.00		-	1	-	60.00	100			ł
24	-	-	-	10	2-0		1 - 12			
-	-		-	-	-	-	-			
-	-	120	-	-	-	14	-			
- 1	-	-	-	+	-	-				

More than 500 devices analyzed **TO UNDERSTAND** what controller does to improve reading

And finally after ~2000 human hours we made an automatic and smart Read Retry algorithm in VNR

Testing Read Retry... Read Retry is found and applied Pass 1 Error blocks count: 87 Corrected blocks: 49 Not corrected blocks: 38 _____ Testing Read Retry... Read Retry is found and applied Pass 2 Error blocks count: 38 Corrected blocks: 0 Not corrected blocks: 38 Testing Read Retry... Read Retry is found and applied Pass 3 Error blocks count: 38 Corrected blocks: 35 Not corrected blocks: 3

Read Retry results compared to normal ECC ReRead

Effectiveness of correction

READ RETRY HELPS TO CORRECT ERRORS FROM ANY SOURCE When ReRead corrects errors caused only by read disturb

Already supported chips

MUCH MORE SOON

SUMMARY

- READING NAND FLASH WITH READ RETRY HELPS TO ADJUST READING PROTOCOL AND SIGNIFICANTLY IMPROVE ٠ **QUALITY OF DATA**
- ALL NEW CHIPS HAVE A BUILT-IN READ RETRY MECHANISM AND ITS USAGE IS THE ONLY PROPER WAY TO ٠ **EXTRACT PHYSICAL IMAGE**
- WORKING BETA VERSION IS RELEASED IN VNR 3.5. ٠
- IN CURRENT VERSION OF SOFTWARE IT IS SPECIFICALLY DESIGNED FOR PARTICULAR MEMORY CHIP ٠

IT IS A AVAILABLE BY REQUEST AT: SUPPORT@RUSOLUT.COM

LET'S MOVE TO PRACTICAL PART

